May 28, 2025

									Iviay 20, 2025
		New and R	evised Regi	strations Sinc	e Publica	tion of 2	018 Editi	ion of Yellow	Sheets
	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	— 2 in. or 4D	
2033-T3	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	Bar, Rod & Wire	0.125-1.181 1.182-3.000	<mark>Min⁶ Min⁶</mark>	<mark>54.0</mark> 49.0	<mark>35.0</mark> 32.0	7 7	Cold Finished.
				1.182-3.000		<mark>49.0</mark>	<mark>32.0</mark>	<mark>/</mark>	
2033-T351	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	Bar, Rod & Wire	<mark>0.125-3.000</mark>	<mark>Min⁶</mark>	<mark>54.0</mark>	<mark>35.0</mark>	5	Cold Finished.
2033-T6	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	Extruded Bar, Rod &	<mark>0.125-3.000</mark>	Min ⁶	<mark>54.0</mark>	<mark>36.0</mark>	8	
			<mark>Wire</mark>	<mark>3.001-10.000</mark>	<mark>Min⁶</mark>	<mark>49.0</mark>	<mark>32.0</mark>	<mark>8</mark>	
<mark>2033-Т6</mark>	<mark>Eural Gnutti</mark> S.p.A.	<mark>05/11/2024</mark>	<mark>Extruded</mark> Profiles	0.125-1.500	<mark>Min⁵</mark>	<mark>49.0</mark>	<mark>32.0</mark>	8	
2033-T6510	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	Extruded Bar, Rod &	0.125-3.000	Min ⁶	<mark>54.0</mark>	<mark>36.0</mark>	8	
			<mark>Wire</mark>	<mark>3.001-10.000</mark>	<mark>Min⁶</mark>	<mark>49.0</mark>	<mark>32.0</mark>	<mark>8</mark>	
<mark>2033-T6510</mark>	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	<mark>Extruded</mark> Profiles	<mark>0.125-1.500</mark>	Min ⁶	<mark>49.0</mark>	<mark>32.0</mark>	8	
2033-T6511	Eural Gnutti S.p.A.	<mark>05/11/2024</mark>	Extruded Bar, Rod &	<mark>0.125-3.000</mark>	Min ⁶	<mark>54.0</mark>	<mark>36.0</mark>	8	
			<mark>Wire</mark>	<mark>3.001-10.000</mark>	Min ⁶	<mark>49.0</mark>	<mark>32.0</mark>	<mark>8</mark>	
2033-T6511	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	<mark>Extruded</mark> Profiles	<mark>0.125-1.500</mark>	Min ⁶	<mark>49.0</mark>	<mark>32.0</mark>	8	
<mark>2033-Т8</mark>	<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	<mark>Bar, Rod &</mark> Wire	0.125-3.000	Min ⁶	<mark>54.0</mark>	<mark>39.0</mark>	8	Cold Finished.

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in – 2 in. or 4D	Remarks ²
Alloy Temper	mper By Date				Basis ¹	Basis ¹ Ult.		- 2 In. or 4D	
2043-T85	Universal	02/07/2019	Extrusion	0.040-0.249	*Min ⁶	76.0	70.0	6	*Tentative
	Alloy			0.250-0.499	*Min ⁶	78.0	73.0	7	Cross-sectional area less than or equal to 23 in2 and circle size less than or equal to
				0.500-0.999	*Min ⁶	80.0	75.0	7	16 in.
				1.000-2.500	*Min ⁶	82.0	78.0	7	Solution heat treated and cold worked in the range 3-6% and artificially aged.
									Stress Corrosion Resistance For ST specimens taken from section thicknesses 0.75 in and greater, See footnote 4b.
									Exfoliation Corrosion Resistance See footnote 15b. Note: ASTM G85 Annex A2 Dry-Bottom MASTMAASIS Method for weeks.
2050-T34	Constellium	01/25/2016 Revised 08/04/2017 Revised 02/01/2019	Plate	0.500-6.500	Min ⁹	50.0	34.0	17	Solution heat treated and cold worked 3-4.5%.

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	— 2 in. or 4D	
2050-T84	Constellium	11/21/2022	Plate	6.501-7.000	*Min ⁶	70.0	66.0	4	*Tentative
					*Min ⁹	70.0	63.0	3	Solution heat treated and cold worked
					*Min ¹⁰	68.0	58.0	1.5	approximately 3-4.5% and artificially aged
				7.001-8.000	*Min ⁶	69.0	65.0	3	Stress Corrosion Resistance
					*Min ⁹	69.0	62.0	2	For thicknesses 6.501 – 8.000 inches
					*Min ¹⁰	66.0	57.0	1.5	Direct C-rings and Tensile specimens machined and tested in accordance with ASTM G47 shall show no evidence of stress corrosion failure when tested in the short transverse direction at 45 ksi and exposed for 30 days. <u>Fracture Toughness¹⁴ – Min Kic</u> For thicknesses 6.501 – 7.000 inches L-T direction 22 ksiVin T-L direction 18 ksiVin S-L direction 16 ksiVin For thicknesses 7.001 – 8.000 inches L-T direction 20 ksiVin T-L direction 16 ksiVin S-L direction 15 ksiVin

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

	Registered		Product	ct Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in – 2 in. or 4D	Remarks ²
Alloy Temper	By	Date			Basis ¹	Ult.	Yield	– 2 in. or 4D	
050-T84	Constellium	11/21/2022	Plate	6.501-7.000	Min ⁶	70.0	66.0	4	
					Min ⁹	70.0	63.0	3	
					Min ¹⁰	68.0	58.0	1.5	Solution heat treated and cold worked approximately 3-4.5% and artificially aged.
				7.001-8.000	Min ⁶	69.0	65.0	3	Stress Corrosion Resistance
					Min ⁹	69.0	62.0	2	For thicknesses 6.501 – 8.000 inches
					Min ¹⁰	66.0	57.0	1.5	Direct C-rings and Tensile specimens machined and tested in accordance with ASTM G47 shall show no evidence of stress corrosion failure when tested in the short transverse direction at 45 ksi and exposed for 30 days.
									<u>Fracture Toughness¹⁴</u> – Min K _{IC} For thicknesses 6.501 – 7.000 inches L-T direction 22 ksiVin T-L direction 18 ksiVin S-L direction 16 ksiVin
									For thicknesses 7.001 – 8.000 inches L-T direction 20 ksiVin T-L direction 16 ksiVin S-L direction 15 ksiVin
<mark>077-T4</mark>	Eural Gnutti	<mark>05/11/2024</mark>	Extruded Bar, Rod &	0.125-3.000	Min ⁶	<mark>58.0</mark>	<mark>39.0</mark>	<mark>10</mark>	
	<mark>S.p.A.</mark>		Wire	<mark>3.001-6.000</mark>	Min ⁶	<mark>57.0</mark>	<mark>38.0</mark>	<mark>9</mark>	
				<mark>6.001-8.000</mark>	Min ⁶	<mark>54.0</mark>	<mark>35.0</mark>	<mark>8</mark>	
				8.001-10.000	Min ⁶	<mark>52.0</mark>	<mark>32.0</mark>	7	

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

								Widy 20, 2025	
	New and R	evised Regi	strations Sinc	e Publicat	tion of 20) 18 Edit	ion of Yellow	Sheets	
Registered		Product	Thickness in.				Elongation Percent in	Remarks ²	
Ву	Date			Basis ¹	Basis ¹ Ult. Yield		— 2 in. or 4D		
<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	Extruded Bar, Rod &	<mark>0.125-3.000</mark>	<mark>Min⁵</mark>	<mark>58.0</mark>	<mark>39.0</mark>	<mark>10</mark>		
		<mark>Wire</mark>	<mark>3.001-6.000</mark>	Min ⁶	<mark>57.0</mark>	<mark>38.0</mark>	<mark>9</mark>		
			<mark>6.001-8.000</mark>	<mark>Min⁶</mark>	<mark>54.0</mark>	<mark>35.0</mark>	8		
			<mark>8.001-10.000</mark>	<mark>Min⁶</mark>	<mark>52.0</mark>	<mark>32.0</mark>	7		
<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	<mark>Bar, Rod &</mark> Wire	<mark>0.125-3.000</mark>	<mark>Min⁶</mark>	<mark>70.0</mark>	<mark>58.0</mark>	5	Cold Finished.	
Eural Gnutti S.p.A.	<mark>05/11/2024</mark>	Extruded Bar, Rod &	0.125-6.000	<mark>Min⁶</mark>	<mark>66.0</mark>	<mark>55.0</mark>	5		
		Wire	<mark>6.001-8.000</mark>	Min ⁶	<mark>61.0</mark>	<mark>41.0</mark>	8		
			<mark>8.001-10.000</mark>	Min ⁶	<mark>58.0</mark>	<mark>39.0</mark>	8		
<mark>Eural Gnutti</mark> <mark>S.p.A.</mark>	<mark>05/11/2024</mark>	Bar, Rod & Wire	0.125-3.000	Min ⁶	<mark>70.0</mark>	<mark>58.0</mark>	5	Cold Finished.	
<mark>Eural Gnutti</mark> S.p.A.	<mark>05/11/2024</mark>	Extruded Bar, Rod &	<mark>0.125-6.000</mark>	<mark>Min⁶</mark>	<mark>66.0</mark>	<mark>55.0</mark>	5		
		Wire	<mark>6.001-8.000</mark>	Min ⁶	<mark>61.0</mark>	<mark>41.0</mark>	8		
			<mark>8.001-10.000</mark>	<mark>Min⁶</mark>	<mark>58.0</mark>	<mark>39.0</mark>	8		
	By Eural Gnutti S.p.A. Eural Gnutti S.p.A. Eural Gnutti S.p.A. Eural Gnutti S.p.A. Eural Gnutti S.p.A.	Registered By Date Eural Gnutti S.p.A. 05/11/2024 Eural Gnutti S.p.A. 05/11/2024	Registered Product By Date Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire	Registered Product Thickness in. By Date 0.125-3.000 Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire 0.125-6.000 Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire 0.125-6.000	Registered Date Product Thickness in. Ten By Date 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Bar, Rod & Wire 0.125-6.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Min ⁶ Eural Gnutti S.p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Min ⁶	Registered Product Thickness in. Thickness in. Thickness Basis ¹ Ult. By Date Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ 58.0 Lural Gnutti S.p.A. D5/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ 54.0 Lural Gnutti S.p.A. D5/11/2024 Bar, Rod & Wire 0.125-3.000 Min ⁶ 54.0 Lural Gnutti S.p.A. D5/11/2024 Bar, Rod & Wire 0.125-3.000 Min ⁶ 52.0 Lural Gnutti S.p.A. D5/11/2024 Bar, Rod & Wire 0.125-6.000 Min ⁶ 66.0 Eural Gnutti S.p.A. D5/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ 58.0 Eural Gnutti S.p.A. D5/11/2024 Bar, Rod & Wire 0.125-3.000 Min ⁶ 58.0 Eural Gnutti S.p.A. D5/11/2024 Bar, Rod & Wire 0.125-6.000 Min ⁶ 66.0 Eural Gnutti S.p.A. D5/11/2024 Extruded Bar, Rod & Wire D125-6.000 Min ⁶ 66.0	Registered Product Thickness in. Tensile Strength, ksi By Date Basis ¹ Ult. Yield Eural Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Minf 58.0 39.0 Eural Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Minf 54.0 35.0 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Minf 54.0 35.0 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Minf 54.0 35.0 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Minf 56.0 55.0 Eural Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Minf 61.0 41.0 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Minf 66.0 55.0 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-6.000 Minf 66.0 55.0 Eural Gnutti S,p.A.	Registered Product Thickness in. ksi ksi Elongation percent in 2 in or 4D By Date 500 6001 8asis ¹ Ut. Yield Eural Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ 58.0 39.0 10 Eural Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-3.000 Min ⁶ 54.0 35.0 8 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Min ⁶ 54.0 35.0 8 Eural Gnutti S,p.A. 05/11/2024 Bar, Rod & Wire 0.125-3.000 Min ⁶ 56.0 55.0 5 Eural Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Min ⁶ 66.0 55.0 5 Burl Gnutti S,p.A. 05/11/2024 Extruded Bar, Rod & Wire 0.125-6.000 Min ⁶ 61.0 41.0 8 Burl Gnutti S,p.A. 05/11/2024 Extruded Wire 0.125-3.000 Min ⁶ 61.0 55.0 5 5	

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

Remarks ²	Elongation Percent in	th,	sile Streng ksi	Tens	Thickness in.	Product	Registered		
	— 2 in. or 4D	Yield	Ult.	Basis ¹			Date	Ву	Alloy Temper
<u>*Tentative</u>	8	73.0 8	*Min ⁶ 76.0 7	1.000-2.000	Plate	11/16/2018	Kaiser	081-T84	
	7	70.0	76.0	*Min ⁹					
Solution heat treated and cold worked 5%.									
<u>- 70.</u>	6	71.0	74.0	*Min ⁶	2.001-3.000				
	6	68.0	75.0	*Min ⁹					
	2	62.0	72.0	*Min ¹⁰					
	6	70.0	73.0	*Min ⁶	3.001-4.000				
	4	67.0	74.0	*Min ⁹					
	2	62.0	71.0	*Min ¹⁰					
Stress Corrosion Resistance	10	58.0	64.0	Min ⁶	1.500-2.000	Plate	06/21/2000	McCook	297-T87
30 days at 45 ksi when tested in the ST	8	60.0	66.0	Min ⁹			Revised	Metals	
direction per ASTM G47 in the thickne range of 3.001-5.100 inches. Product	2	57.0	65.0	Min ¹⁰			06/03/2004	Constalling	
outside this thickness rage will continu	9	57.0	63.0	Min ⁶	2.001-2.500		Revised 01/12/2022	Constellium	
exhibit capability of 30 days at 30 ksi.	7	58.0	64.0	Min ⁹					
Exfoliation Corrosion Resistance See footnote 15.b.	2	56.0	64.0	Min ¹⁰					
See loothote 15.b.	9	57.0	62.0	Min ⁶	2.501-3.000				
<u>Fracture Toughness</u> ¹⁴ – Min K _{Ic}	7	58.0	64.0	Min ⁹	2.501 5.000				
For thicknesses 1.500-3.000 inches	2	55.0	62.0	Min ¹⁰					
L-T direction 32 ksi vin. T-L direction 27 ksi vin.	5	57.0	62.0	Min ⁶	3.001-4.000				
S-L direction 20 ksi vin.	4	57.0	62.0	Min ⁹	5.001-4.000				
	1.5	54.0	59.0	Min ¹⁰					

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in — 2 in. or 4D	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	2 111. 01 4D	
				4.001-5.000	Min ⁶ Min ⁹ Min ¹⁰	61.0 61.0 58.0	56.0 56.0 52.0	5 4 1.5	For thicknesses 3.001-4.000 inches L-T direction 31 ksi Vin. T-L direction 27 ksi Vin. S-L direction 20 ksi Vin.
				5.001-6.000	Min ⁶ Min ⁹ Min ¹⁰	60.0 60.0 57.0	55.0 55.0 52.0	5 4 1.5	For thicknesses 4.001-5.000 inches L-T direction 30 ksi √in. T-L direction 26 ksi √in. S-L direction 18 ksi √in.
									For thicknesses 5.001-6.000 inches L-T direction 29 ksi √in. T-L direction 25 ksi √in. S-L direction 18 ksi √in.
2397-T87	Alcoa Revised Arconic	02/12/2003 Revised 08/17/2005 Revised 08/02/2018	Plate	3.001-4.000	Min ⁶ Min ⁹ Min ¹⁰	62.0 62.0 60.0	57.0 57.0 54.0	5 4 1.5	Stress Corrosion Resistance See footnote 4.b. Exfoliation Corrosion Resistance See footnote 15.b. Fracture Toughness ¹⁴ – Min K _{Ic} For thickness 3.001-4.000
5061-T651	Constellium	09/09/2019	Plate	6.001-8.000	Min ⁹	42.0	36.0	9	L-T direction 31 ksi Vin. T-L direction 27 ksi Vin. S-L direction 20 ksi Vin. *Tentative
				8.001-10.000	Min ⁹	41.0	34.0	8	
				10.001-12.000	Min ⁹	40.0	32.0	8	

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

Remarks ²	Elongation Percent in	th,	sile Strengt ksi	Tens	uct Thickness in.	Product	Registered		
	— 2 in. or 4D	Yield	Ult.	Basis ¹			Date	By	Alloy Temper
	10	63.0	67.0	Min ⁶	0.040 - 0.125	Extrusion	04/08/2020	Kaiser	048-T6511
Exfoliation Corrosion Resistance See footnote 15. b.	7	85.0	89.0	Min ⁶	Up thru 0.249	Extruded Rod, Bar &	01/15/2001 Revised	Alcoa	055-T76511
For thickness up thru 0.499 Inch Cross Sectional Area 12 in. ² and Circle Size 10 in. max.	9 9	85.0 86.0	90.0 91.0	Min ⁶ Min ⁶	0.250 - 0.499 0.500 - 3.000	Profile	06/20/2007 Revised 08/14/2020	Revised Arconic	
For thickness 0.500 – 3.000 Inch Cross Sectional Area 26.3 in. ² and Circl Size 15.3 in. max.									
Longitudinal Compressive Yield Strength: 87.0 ksi									
*Tentative <u>Stress Corrosion Resistance</u> See footnote 4e.	10 7 5	60.0 59.0 54.0	68.0 69.0 66.0	<mark>Min⁵</mark> Min ⁹ Min¹⁰	<mark>4.000-5.000</mark>	<mark>Plate</mark>	<mark>02/17/2025</mark>	Constellium	7 <mark>140-T7351</mark>
Fracture Toughness ¹⁴ – Min K _{IC} or K _Q For thicknesses 4.000-5.000 inches	10 6 5	60.0 59.0 54.0	68.0 69.0 65.0	Min ⁶ Min ⁹ Min ¹⁰	<mark>5.001-6.000</mark>				
L-T direction 35 ksivin T-L direction 25 ksivin S-L direction 27 ksivin	9 6 5	59.0 58.0 53.0	<mark>67.0</mark> 68.0 64.0	<mark>Min⁶ Min⁹ Min¹⁰</mark>	<mark>6.001-7.000</mark>				
For thicknesses 5.001-6.000 inches L-T direction 33 ksivin T-L direction 25 ksivin S-L direction 27 ksivin	8 5 5	58.0 57.0 53.0	<mark>67.0</mark> 68.0 64.0	Min ⁶ Min ⁹ Min ¹⁰	<mark>7.001-8.000</mark>				

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in - 2 in. or 4D	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	2 m. or 12	
				<mark>8.001-9.000</mark>	Min ⁶ Min ⁹ Min ¹⁰	<mark>67.0</mark> 68.0 64.0	58.0 57.0 53.0	8 5 5	For thicknesses 6.001-7.000 inches L-T direction 31 ksivin T-L direction 25 ksivin S-L direction 27 ksivin
				9.001-10.000	Min⁵ Min ⁹ Min ¹⁰	66.0 67.0 63.0	<mark>57.0</mark> 56.0 52.0	7 4 5	For thicknesses 7.001-8.000 inches L-T direction 29 ksivin T-L direction 24 ksivin S-L direction 27 ksivin
									For thicknesses 8.001-9.000 inches L-T direction 27 ksiVin T-L direction 24 ksiVin S-L direction 27 ksiVin
									For thicknesses 9.001-10.000 inches L-T direction 27 ksivin T-L direction 24 ksivin S-L direction 27 ksivin
'160-T7351	Constellium	11/08/2018 Revised	Plate	1.000-1.500	Min ⁶ Min ⁹	74.0 74.0	67.0 65.0	13 11	Stress Corrosion Resistance See footnote 4e.
		02/06/2020		1.501-2.000	Min ⁶ Min ⁹	73.0 73.0	67.0 65.0	13 11	<u>Fracture Toughness¹⁴</u> – Min K _{IC} or K _Q For thicknesses 1.000-2.000 inches L-T direction 40 ksiVin
				2.001-3.000	Min ⁶ Min ⁹ Min ¹⁰	72.0 73.0 70.0	65.0 64.0 59.0	12 10 6	T-L direction 34 ksiVin For thicknesses 2.001-3.000 inches L-T direction 45 ksiVin T-L direction 33 ksiVin S-L direction 35 ksiVin

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in — 2 in. or 4D	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	2 111. 01 40	
				3.001-4.000	Min ⁶	71.0	4.0	12	For thicknesses 3.001-4.000 inches
					Min ⁹	72.0	63.0	9	L-T direction 38 ksivin
					Min ¹⁰	70.0	58.0	5	T-L direction 30 ksivin
									S-L direction 34 ksiVin
				4.001-5.000	Min ⁶	70.0	64.0	11	For thicknesses 4.001-5.000 inches
					Min ⁹	72.0	62.0	8	L-T direction 36 ksiVin
					Min ¹⁰	69.0	58.0	4	T-L direction 27 ksiVin
									S-L direction 31 ksiVin
				5.001-6.000	Min ⁶	70.0	63.0	11	3-L UII ECHOIT ST KSIVIII
					Min ⁹	71.0	61.0	7	For thicknesses 5.001-6.000 inches
					Min ¹⁰	68.0	58.0	3	L-T direction 28 ksivin
									T-L direction 25 ksivin
									S-L direction 26 ksivin
0-T7451	Alcan	06/15/2005	Plate	4.001-5.000	Min ⁶	71.0	66.0	9	Stress Corrosion Resistance
	Revised				Min ⁹	73.0	65.0	5	See footnote 4.b.
	Constellium	<mark>04/16/2024</mark>			Min ¹⁰	69.0	60.0	3	
	constenium	04/10/2024							Exfoliation Corrosion Resistance
				5.001-6.000	Min ⁶	71.0	66.0	8	See footnote 15.b.
					Min ⁹	72.0	65.0	4	
					Min ¹⁰	69.0	60.0	3	
				6.001-7.000	Min ⁶	71.0	65.0	7	
					Min ⁹	72.0	64.0	4	
					Min ¹⁰	68.0	59.0	3	
				7.001-8.000	Min ⁶	70.0	65.0	6	
					Min ⁹	71.0	63.0	4	
					Min ¹⁰	68.0	58.0	3	

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

FN 15. b. Material shall be capable of demonstrating exfoliation corrosion resistance. Exfoliation corrosion resistance shall be determined in accordance with ASTM G34 and material shall not exhibit exfoliation corrosion greater than that illustrated by Photo EB, Figure 2. The applicable sample plane for testing is indicated by one of the following locations: b. At the T/10 plane.

May 28, 2025

Remarks ²	Elongation Percent in 2 in. or 4D	th,	sile Strengt ksi	Tens	Thickness in.	Product	Registered		
	- 2 in. or 4D	Yield	Ult.	Basis ¹			Date	By	Alloy Temper
	6	65.0	70.0	Min ⁹	8.001-9.000				
	<mark>4</mark>	63.0	71.0	Min ⁹					
	3	58.0	67.0	Min ¹⁰					
	5	65.0	70.0	Min ⁹	9.001-10.000				
	3	63.0	70.0	Min ⁹					
	3	58.0	67.0	Min ¹⁰					
Stress Corrosion Resistance	7	70.0	74.0	Min ⁶	4.001-5.000	Plate	08/01/2006	Alcan	140-T7651
Material shall be capable of passing th	6	69.0	76.0	Min ⁹			Revised	Revised	
stress corrosion cracking test describe	3	63.0	73.0	Min ¹⁰			03/27/2014	Constellium	
in ASTM G47 when stressed to 26 ksi f							Revised	Revised	
20 days.	7	70.0	74.0	Min ⁶	5.001-6.000		02/27/2023	Constellium	
Exfoliation Corrosion Resistance	4	68.0	75.0	Min ⁹			02,27,2020	constentant	
See footnote 15.b.	3	62.0	72.0	Min ¹⁰					
Fracture Toughness ¹⁴ – Min K _{IC} For	7	69.0	73.0	Min ⁶	6.001-7.000				
thicknesses 4.001-5.000 inches	3	68.0	75.0	Min ⁹					
L-T direction 27 ksiVin.	3	62.0	71.0	Min ¹⁰					
T-L direction 22 ksiVin.									
S-L direction 22 ksiVin.	6	69.0	72.0	Min ⁶	7.001-8.000				
For thicknesses 5.001-6.000 inches	3	67.0	74.0	Min ⁹					
L-T direction 25 ksiVin.	3	61.0	71.0	Min ¹⁰					
T-L direction 21 ksiVin.	5	68.0	72.0	Min ⁶	8.001-9.000				
S-L direction 22 ksiVin.	3	65.0	73.0	Min ⁹	3.001-3.000				
For thicknesses 6.001-7.000 inches	3	60.0	69.0	Min ¹⁰					
L-T direction 24 ksiVin.	5	00.0	05.0						
T-L direction 20 ksiVin.									
S-L direction 22 ksiVin.									

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

FN 15. b. Material shall be capable of demonstrating exfoliation corrosion resistance. Exfoliation corrosion resistance shall be determined in accordance with ASTM G34 and material shall not exhibit exfoliation corrosion greater than that illustrated by Photo EB, Figure 2. The applicable sample plane for testing is indicated by one of the following locations: b. At the T/10 plane.

May 28, 2025

	Registered		Product	Thickness in.	Ten	sile Streng ksi	th,	Elongation Percent in – 2 in. or 4D	Remarks ² For thicknesses 7.001-8.000 inches
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	2 111. 01 40	
				9.001-10.000	Min ⁶	71.0	67.0	5	
					Min ⁹	71.0	64.0	2	L-T direction 22 ksi√in.
					Min ¹⁰	68.0	59.0	3	T-L direction 19 ksivin.
									S-L direction 21 ksi√in.
									For thicknesses 8.001-9.000 inches
									L-T direction 20 ksivin.
									T-L direction 18 ksi√in.
									S-L direction 20 ksivin.
									For thicknesses 9.001-10.000 inches
								L-T direction 18 ksi√in.	
									T-L direction 17 ksi√in.
									S-L direction 20 ksiVin.
160-T7451	Constellium	11/02/2018	Plate	1.000-1.500	*Min ⁶	77.0	71.0	14	*Tentative
					*Min ⁹	76.0	69.0	13	Stress Corrosion Resistance
									See footnote 4b.
				1.501-2.000	*Min ⁶	77.0	71.0	14	Fracture Toughness ¹⁴ – Min K _{IC} or K _Q
					*Min ⁹	76.0	69.0	12	For thicknesses 1.000-1.500 inches
					*Min ¹⁰	73.0	64.0	6	L-T direction 34 ksivin
									T-L direction 29 ksivin
				2.001-3.000	*Min ⁶	75.0	69.0	13	
					*Min ⁹	75.0	68.0	11	For thicknesses 1.501-2.000 inches
					*Min ¹⁰	73.0	64.0	6	L-T direction 34 ksivin
									T-L direction 29 ksi√in
				3.001-4.000	*Min ⁶	73.0	68.0	13	For thicknesses 2.001-3.000 inches
					*Min ⁹	75.0	67.0	10	L-T direction 32 ksiVin
					*Min ¹⁰	72.0	62.0	4	T-L direction 27 ksiVin
									S-L direction 28 ksiVin

May 28, 2025

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

Registered			Product Thickness in.		Tensile Strength, ksi			Elongation Percent in	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	- 2 in. or 4D	
				4.001-5.000	*Min ⁶ *Min ⁹ *Min ¹⁰	72.0 74.0 70.0	67.0 66.0 61.0	11 9 3	For thicknesses 3.001-4.000 inches L-T direction 30 ksivin T-L direction 25 ksivin
				5.001-6.000	*Min ⁶ *Min ⁹ *Min ¹⁰	72.0 73.0 69.0	66.0 65.0 61.0	10 6 2	S-L direction 27 ksiVin For thicknesses 4.001-5.000 inches L-T direction 28 ksiVin T-L direction 24 ksiVin S-L direction 26 ksiVin
									For thicknesses 5.001-6.000 inches L-T direction 26 ksivin T-L direction 22 ksivin S-L direction 25 ksivin
'160-T7651	Constellium	12/05/2017 Revised	Plate	1.000-1.500	Min⁵ Min⁵	79.0 78.0	74.0 72.0	13 13	Stress Corrosion Resistance See footnote 4a.
		12/19/2018		1.501-2.000	Min⁵ Min³ Min¹⁰	78.0 78.0 75.0	74.0 72.0 66.0	12 12 6	Fracture Toughness [™] – Min Kıc or Ko For thicknesses 1.000-2.000 inches L-T direction 34 ksivin T-L direction 29 ksivin
				2.001-3.000	Min⁵ Min³ Minΰ	76.0 77.0 74.0	72.0 71.0 65.0	12 11 5	For thicknesses 2.001-3.000 inches L-T direction 32 ksiVin T-L direction 27 ksiVin
				3.001-4.000	Min⁰ Min⁰ Min¹⁰	75.0 77.0 73.0	72.0 70.0 64.0	12 10 4	S-L direction 29 ksiVin For thicknesses 3.001-4.000 inches L-T direction 29 ksiVin T-L direction 26 ksiVin S-L direction 28 ksiVin

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

FN 15. b. Material shall be capable of demonstrating exfoliation corrosion resistance. Exfoliation corrosion resistance shall be determined in accordance with ASTM G34 and material shall not exhibit exfoliation corrosion greater than that illustrated by Photo EB, Figure 2. The applicable sample plane for testing is indicated by one of the following locations: b. At the T/10 plane.

May 28, 2025

Remarks ²	Elongation Percent in — 2 in. or 4D	Tensile Strength, ksi			Thickness in.	Product	Registered		
		Yield	Ult.	Basis ¹			Date	By	Alloy Temper
	11	71.0	74.0	Min⁵	4.001-5.000				
	9	69.0 64.0	76.0 73.0	Min [®]					
	4	64.0	/3.0	Min ¹⁰					
Solution heat treated, stretched 1.5 to 3 and overaged for ballistic performance.	11	74.0	80.0	Min ⁹	0.500-1.500	Plate	10/25/2011 Revised	Alcoa Revised	7085-T711
0.500-3.000 in. plate meets armor plate requirements of MIL-DTL-32375 (MR) Cl	11	73.0	78.0	Min ⁹	1.501-2.000		08/02/2018	Arconic	
I Type A.	10	72.0	77.0	Min ⁹	2.001-3.000				
Exfoliation Corrosion Resistance See footnote 15.b.	7	70.0	76.0	Min ⁹	3.001-4.000				
Solution heat treated, stretched 1.5 to 3 and overaged for ballistic performance.	12	60.0	68.0	Min ⁹	0.500-1.500	Plate	10/27/2011 Revised	Alcoa Revised	7085-T721
0.500-3.000 in. plate meets armor plate requirements of MIL-DTL-32375 (MR) Clas I Type B.	12	59.0	67.0	Min ⁹	1.501-2.000		08/02/2018	Arconic	
	11	58.0	67.0	Min ⁹	2.001-3.000				
Exfoliation Corrosion Resistance See footnote 15.b.	10	57.0	66.0	Min ⁹	3.001-4.000				
*Tentative	12	58.0	68.0	*Min ⁹	2.000-3.000	Plate	03/13/2020	Kaiser	7099-T731
Solution heat treated, stretched 1.5 to 3 and artificially aged to meet armor plate requirements. Developed to meet armor plate requirements of MIL-DTL-32375 (Revisio Amendment 2).									
Exfoliation Corrosion Resistance See footnote 15.b.									

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

Registered			Product	Thickness in.	Tensile Strength, ksi			Elongation Percent in	Remarks ²
Alloy Temper	Ву	Date			Basis ¹	Ult.	Yield	– 2 in. or 4D	
A206-T4	Eck Industries	09/14/2020	Sand Casting	-	Min	51.0	31.0	9	Properties are from separate standard cast coupons.
A206-T7	Eck Industries	09/14/2020	Sand Casting	-	Min	50.0	35.0	2	Properties are from separate standard cast coupons.
357-T61	Eck Industries	02/17/2017	Sand Casting	-	Min	40.0	34.0	1	Values represent properties obtained from separately cast bars and are derived from ASTM B-26, Standard Specification for Aluminum-Alloy Sand Castings.

	Tentative Removed						
Alloy Temper	Product	Ву	Revised Date				
2397-T87	Plate	Arconic	08/02/2018				
7085-T711	Plate	Arconic	08/02/2018				
7085-T721	Plate	Arconic	08/02/2018				
7160-T7351	Plate	Constellium	02/06/2020				
7160-T7651	Plate	Constellium	12/19/2018				
2050-T34	Plate	Constellium	02/01/2019				

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse

Deactivated Tempers						
Alloy /Temper	Product	Date Deactivated				
Alclad 2024-O ²	Sheet & Plate	08/11/2018				
Alclad 2024-T351 ²	Plate	08/11/2018				
Alclad 2024-T42 ²	Sheet & Plate	08/11/2018				
1 ½% Alclad 2024-O ²	Sheet & Plate	08/11/2018				
1 1/2% Alclad 2024-T3512	Plate	08/11/2018				
1 1/2% Alclad 2024-T422	Sheet & Plate	08/11/2018				

⁺⁺ Deactivation is limited to specific gauge range(s) for the product indicated

Unless specified below, for all referenced footnotes refer to the Yellow and/or Tan Sheets as applicable.

FN 4.b. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: b. 35 ksi.

FN 4.e. Material shall be capable of passing the stress corrosion cracking test described in ASTM G47 when stressed to: e. 45 ksi.

FN 9 Long Transverse

FN 10 Short Transverse